UNIVERSIDAD NACIONAL DEL CALLAO

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA

ESCUELA PROFESIONAL DE FÍSICA

SILABO

ASIGNATURA: Física Computacional II

SEMESTRE ACADÉMICO: 2023-B

DOCENTE: Dr. JUVENAL TORDOCILLO PUCHUC

CALLAO, PERÚ

2023

SILABO

I. DATOS GENERALES

1.1 Asignatura : Física Computacional II

1.2 Código : FI-901, 01F
1.3 Carácter : Obligatorio
1.4 Requisito (nombre y cód.) : FI-801
1.5 Ciclo : IX

1.6 Semestre Académico : 2023-A

1.7 N° Horas de Clase : Teoría 03 h/ Laboratorio 04 h

1.8 N° de Créditos : 05

1.9 Duración : 16 semanas

1.10 Docente : Dr. Juvenal Tordocillo Puchuc

1.10 Modalidad : Presencial

II. SUMILLA

La asignatura de Física Computacional II pertenece al área de estudios de especialidad, es de naturaleza teórico practico y de carácter obligatorio.

El propósito que el estudiante desarrolle competencias de pensamiento crítico e investigación para brindar técnicas numéricas basadas en el método Montecarlo con aplicaciones al uso científico y tecnológico. Es una asignatura eje a los productos de investigación formativa basado en artículos de opinión y/o trabajo de investigación.

El contenido se organiza en dos unidades y los temas tratados son:

Generadores de variables aleatorias. Distribuciones. Funciones de distribución de probabilidad (PDF). Cambio de variable. Leyes de grandes números. Teorema de límite central. Aplicaciones. Integrales de Montecarlo en una y multidimensionales. Muestreo significativo. Ecuación de difusión. Procesos y cadena de Markov. Teorema H. Algoritmo de metrópolis. Propagación de errores. Simulación de distribución de Boltzmann. Modelo Ising. Minimización estocástica. Inversión de matrices. Dinámica molecular y simulación Montecarlo. Ecuaciones diferenciales estocásticas. Movimiento browniano, esquema de Euler Maruyama, Milstein. Introducción a los algoritmos genéticos. Aplicaciones a fenómenos físicos.

III. COMPETENCIA(S) DEL PERFIL DE EGRESO

3.1 Competencias generales

CG1. Comunicación.

Comprende el uso de las técnicas del método Montecarlo e implementa en un lenguaje de programación y a partir de sus resultados difunde las técnicas estocásticas para su uso en diferentes ramas del saber.

CG2. Trabaja en equipo.

Mediante el trabajo de investigación formativa elaboran programas para simular fenómenos físicos de forma grupal y colaborativa con diferentes técnicas del método Montecarlo aplicado a la vida cotidiana.

CG3. Pensamiento crítico.

Encuentra resultados a partir de la simulación de fenómenos físicos, mediante el uso del método Montecarlo y analiza los resultados en gráficos para diferentes situaciones o escenarios probables, con una opinión crítica y científica.

3.2 Competencias específicas

- Simula la evolución de los sistemas físicos a través del método Montecarlo y aplica a sistemas fluctuantes en el tiempo.
- Aplica metodologías del método Montecarlo y herramientas tecnológicas para simular procesos físicos.

IV. CAPACIDAD (ES)

- **C1.** Maneja correctamente el lenguaje de programación FORTRAN e implementa simulaciones programas para simular y/o predecir el comportamiento de fenómeno físicos fluctuantes en el tiempo.
- **C2.** Maneja correctamente el lenguaje de programación PYTHON con la finalidad de realizar diferentes gráficos, obtenidas de los resultados en FORTRAN, con la finalidad de comprender el fenómeno físico.
- **C3.** Aplica los criterios del método Montecarlo para implementar programas en un lenguaje de programación FORTRAN y analiza los resultados para dar una opinión coherente del fenómeno.
- **C4.** Conoce las deducciones de los algoritmos basado en Montecarlo e implementa de forma eficiente en lenguaje de programación FORTRAN y da una explicación del fenómeno.

.

V. ORGANIZACIÓN DE LAS UNIDADES DE APRENDIZAJE

UNIDAD DE APRENDIZAJE No 1: GENERADORES ALEATORIOS Y PRINCIPIOS BÁSICOS DEL METODO MONTECARLO

Inicio: 21/08/2023 Término: 15/09/2023

LOGRO DE APRENDIZAJE

- Hace uso de diferentes generadores aleatorios para generar números pseudoaleatorios.
- Comprende el uso del conjunto de métodos Montecarlo y elabora algoritmos según el caso a simular.
- Interpreta los resultados de la simulación a través de procesos de abstracción, análisis y síntesis desde una perspectiva científica y ética.

Capacidad:

- Maneja correctamente el lenguaje de programación FORTRAN para simular bajo el enfoque del método Montecarlo y predecir el comportamiento de un fenómeno físico.
- Maneja correctamente el lenguaje que permita graficar con la finalidad de realizar diferentes gráficos que permitan explicar y comprender el fenómeno físico.
- Conoce las deducciones de los algoritmos bajo el enfoque del método Montecarlo e implementa de forma eficiente en el lenguaje de programación FORTRAN y analiza los resultados para dar una opinión coherente del fenómeno.

- Presentación oral de resultados obtenidos a partir de programas implementados.
- Elaboración de informe de laboratorio.

No. Sesión Horas Lectivas	Temario/Actividad	Indicador (es) de logro	Instrumento de evaluació
SESION 1: (4 Horas)	Introducción al método Montecarlo. Descripción de problemas estocásticos en física. Números aleatorios. Generadores de números Aleatorias Uniformes y técnicas.	Entiende el método Montecarlo y elabora programas para generar números pseudoaleatorios.	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 2 (3 Horas)	Formación de grupos de IF. Repaso de programas, subprogramas y subrutinas. Manejo de Python para graficar diferentes tipos de gráficos.	Genera programas en Fortran y utiliza un graficador para elaborar diferentes tipos de datos.	- Rubrica - Portafolio
0=0.00	Función de probabilidad o de densidad. Funciones de distribución uniforme. Funciones de distribución acumulada. Aplicaciones.	Comprende las diferentes funciones de probabilidad y realiza aplicaciones utilizando funciones distribución uniforme.	- Rubrica - Hoja de Laboratorio - Portafolio

SESION 4 (3 Horas)	Métodos de variables aleatorias no uniformes. Método de transformada inversa. Método de aceptación rechazo. Método de composición.	Comprende diferentes métodos de variables aleatorias no uniformes e implementa diferentes aplicaciones.	- Rubrica - Portafolio
SESION 5 (4 Horas)	Aplicación: Método de aceptación y rechazo para estimar el valor de π , con diferentes variantes.	Elabora seudocódigo e implementa un programa para estimar el valor de π .	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 6 (3 Horas)	Aplicación: La aguja de buffon y la estimación del valor de π .	Elabora seudocódigo para estimar el valor número π en el programa de FORTRAN	- Rubrica - Portafolio
SESION 7 (4 Horas)	Valor esperado o Esperanza matemática. Varianza. Ley de los grandes números. Aplicaciones para estimar el valor de π .	Elabora seudocódigo para estimar el valor número π en el programa de FORTRAN	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 8 (3 Horas)	Exposición del avance de trabajo de investigación formative (IF).	Utiliza los conocimentos adquiridos y propone aplicaciones concretas a la problemática planteada del trabajo de investigación formativa (IF)	- Rubrica - Portafolio

UNIDAD DE APRENDIZAJE No 2: MÉTODOS DE INTEGRACIÓN POR EL MÉTODO MONTECARLO

Inicio: 18/09/2023 Término: 13/10/2023

LOGRO DE APRENDIZAJE

- Deduce algoritmos a partir del métodos de integración Montecarlo de una variable y multidimensional.
- Implementa programas en un lenguaje de programación como FORTRAN a partir de algoritmos y/o seudocódigo.

Capacidad:

- Maneja correctamente el lenguaje de programación FORTRAN para aproximar cálculos con la finalidad de predecir el comportamiento de un fenómeno físico.
- Maneja correctamente un lenguaje de programación para realizar gráficos que permitan comprender el fenómeno físico simulado por Montecarlo.
- Conoce las deducciones de los algoritmos por Montecarlo e implementa de forma eficiente en lenguaje de programación FORTRAN y analiza los resultados para dar una opinión coherente del fenómeno.

- Presentación oral de resultados obtenidos a partir de programas implementados.
- Elaboración de informe de laboratorio.
- Examen parcial en una hoja de trabajo

No. Sesión Horas Lectivas	Temario/Actividad	Indicador (es) de logro	Instrumento de evaluación
SESION 9 (4 Horas)	Método de integración Montecarlo en una dimensión por el método de aceptación y rechazo.	Elabora pseudocódigo e implementa para estimar la integral en una dimension por aceptación y rechazo.	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 10 (3 Horas)	Método de integración Montecarlo en una dimensión por el método de valores medios y variantes.	Elabora pseudocódigo e implementa para estimar la integral en una dimension por valores medios.	- Rubrica - Portafolio
SESION 11 (4 Horas)	Método de integración Montecarlo en una dimensión mediante muestreo por importancia.	Elabora pseudocódigo e implementa para estimar la integral en una dimension por muestreo por importancia.	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 12 (3 Horas)	Método de integración montecarlo multidimensional. Por el método de aceptación y rechazo. Valores medios.	Elabora pseudocódigo e implementa para estimar la integral multidimensional.	- Rubrica - Portafolio
SESION 13 (4 Horas)	Generación de una matriz aleatoria. Extracción una sub matriz de 3x3 en cualquier punto de la matriz e implementación.	Deduce un algoritmo para la extracción de una submatriz 3x3 e implementa en FORTRAN.	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 14 (3 Horas)	Control del avance de trabajo de investigación formativa.	Plantea los objetivos y la problemática del trabajo de investigación formativa (IF)	- Rubrica - Portafolio
SESION 15 (4 Horas)	EXAMEN PARCIAL	Entiende e implementa programas, mediante diferentes técnicas de diferenciación Montecarlo.	- Rubrica - Cuestionario

UNIDAD DE APRENDIZAJE No 3: CAMINOS ALEATORIOS

Inicio: 16/10/2023 Término: 10/11/2023

LOGRO DE APRENDIZAJE

- Comprende los algoritmos caminos aleatorios e implementa en un lenguaje de programación FORTRAN.
- Utiliza un lenguaje de programación para implementar diferentes métodos y técnicas del método Montecarlo.
- Interpreta los resultados de la simulación Montecarlo a través de procesos de abstracción, análisis y síntesis desde una perspectiva científica y ética.

Capacidad:

- Maneja correctamente el lenguaje de programación FORTRAN para generar cálculos con la finalidad de predecir el comportamiento de un fenómeno físico.
- Conoce las deducciones de los seudocódigos e implementa mediante el método Montecarlo en lenguaje de programación FORTRAN y da una explicación del fenómeno.

- Presentación oral de resultados obtenidos a partir de programas implementados.
- Elaboración de monografías y/o ensayos.

No. Sesión Horas Lectivas	Temario/Actividad	Indicador (es) de logro	Instrumento de evaluación
SESION 16 (4 Horas)	Algoritmos dinámicos. Cadenas de Markov. Algoritmo de metrópolis. Algoritmo del recocido simulado.	Implementa el algoritmo de metrópolis y algoritmo del recocido simulado en FORTRAN.	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 17 (3 Horas)	Caminos aelatorios. Caminos aleatorios en una y dos dimensiones.	Implementa el algoritmo de caminos aleatorios en una y dos dimensiones en FORTRAN.	- Rubrica - Portafolio
SESION 18 (4 Horas)	Desintegración radiactiva. Modelo de decaimiento radiactivo. Algoritmo de decaimiento mediante montecarlo. Comparación con métodos determinísticos.	Implementa mediante método montecarlo procesos de desintegración radiactiva en FORTRAN.	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 19 (3 Horas)	Difusión de moleculas en una caja. Paso de un haz en un medio participante e implementación.	Implementa mediante método montecarlo el paso de un haz en un medio participante.	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 20 (4 Horas)	Aplicaciones de caminos aleatorios para EDP. Ecuaciones Poisson e implementación.	Implementa mediante el método de caminos aleatorios para simular ecuaciones Poisson.	- Rubrica - Hoja de Laboratorio - Portafolio

SESION 21 (4 Horas)	Movimiento Browniano I. Modelo físico. Modelo matemático. Procesos de Wiener aritmetico.	Implementa mediante el proceso de Wiener aritmético simulaciones de variables aleatorias con comportamiento espacial y temporal.	- Rubrica - Portafolio
SESION 22 (4 Horas)	Movimiento Browniano II. Proceso de Wiener geométrico. Implementación.	Implementa mediante el proceso de Wiener geométrico simulaciones de variables aleatorias con comportamiento espacial y temporal.	- Rubrica - Portafolio
SESION 23 (3 Horas)	Exposición del avance de trabajo de investigación formative (IF).	Utiliza los conocimentos adquiridos y propone aplicaciones concretas a la problemática planteada del trabajo de investigación formativa (IF)	- Rubrica - Portafolio

UNIDAD DE APRENDIZAJE No 4: INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ESTOCASTICAS

Inicio: 13/11/2023 Término: 08/12/2023

LOGRO DE APRENDIZAJE

- Comprende la formulación de Ecuaciones Diferenciales Estocasticas e implementa en un lenguaje de programación FORTRAN.
- Utiliza un lenguaje de programación para implementar diferentes métodos y técnicas del método Montecarlo.
- Interpreta los resultados de la simulación Montecarlo a través de procesos de abstracción, análisis y síntesis desde una perspectiva científica y ética.

Capacidad:

- Maneja correctamente el lenguaje de programación FORTRAN para generar cálculos con la finalidad de predecir el comportamiento de un fenómeno físico.
- Conoce las deducciones de los seudocódigos e implementa mediante el método Montecarlo en lenguaje de programación FORTRAN y da una explicación del fenómeno.

- Presentación oral de resultados obtenidos a partir de programas implementados.
- Elaboración de monografías y/o ensayos.

No. Sesión Horas Lectivas	Temario/Actividad	Indicador (es) de logro	Instrumento de evaluación
SESION 24 (4 Horas)	diferenciales estocásticas (EDE).	Comprende la formulación de una EDE y resuelve utilizando las propiedades itó.	RubricaHoja de LaboratorioPortafolio

SESION 25 (3 Horas)	Método de Euler-Maruyama para EDE. Algoritmo e implementación. Aplicaciones.	Implementa mediante el método de Euler-Maruyama para aproximar una EDE.	- Rubrica - Portafolio
SESION 26 (4 Horas)	Exposición grupal de aplicaciones del métodos de caminos aleatorios y de los procesos de Wiener.	Comprende y aplica diferentes técnicas de caminos aleatorios y los procesos de Wiener a casos prácticos.	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 27 (3 Horas)	Dinámica Molecular y el movimiento browniano.	Comprende e implementa modelos de dinámica molecular.	- Rubrica - Portafolio
SESION 28 (4 Horas)	Aplicación: Modelo ISING para materiales ferromagnéticos.	Comprende e implementa el modelo ISING para determinar la tempertura crítica de un material ferromagnético.	- Rubrica - Hoja de Laboratorio - Portafolio
SESION 29 (3 Horas)	Exposición del trabajo de investigación formative (IF).	Utiliza los conocimentos adquiridos y propone aplicaciones concretas a la problemática planteada del trabajo de investigación formativa (IF)	- Rubrica - Portafolio
SESION 30 (4 Horas)	EXAMEN FINAL	Entiende e implementa programas, mediante diferentes técnicas EDO	- Rubrica - Cuestionario

VI. METODOLOGÍA

La *Universidad Nacional del Callao*, Licenciada por la SUNEDU tiene como fin supremo la formación integral del estudiante, quien es el eje central del proceso educativo de formación profesional; es así como el Modelo Educativo de la UNAC implementa las teorías educativas constructivista y conectivista, y las articula con los componentes transversales del proceso de enseñanza – aprendizaje, orientando las competencias genéricas y específicas. Este modelo tiene como propósito fundamental la formación holística de los estudiantes y concibe el proceso educativo en la acción y para la acción. Además, promueve el aprendizaje significativo en el marco de la construcción o reconstrucción cooperativa del conocimiento y toma en cuenta los saberes previos de los participantes con la finalidad que los estudiantes fortalezcan sus conocimientos y formas de aprendizaje y prosperen en la era digital, en un entorno cambiante de permanente innovación, acorde con las nuevas herramientas y tecnologías de información y comunicación.

La plataforma de la UNAC es el Sistema de Gestión Académico (SGA-UNAC) basado en Moodle, en donde los estudiantes, tendrán a su disposición información detallada de la asignatura: el sílabo, recursos digitales, guía de entregables calificados, y los contenidos de la clase estructurados para cada sesión educativa. El SGA será complementado con las diferentes soluciones que brinda Google Suite for Education y otras herramientas tecnológicas multiplataforma.

Las estrategias metodológicas didáctica para el desarrollo de las sesiones teóricas y prácticas permiten dos modalidades de aprendizaje en los estudiantes:

5.1 Herramientas metodológicas de comunicación síncrona

La modalidad asíncrona es una forma de aprendizaje basado en el uso de herramientas que permiten la comunicación no presencial y en tiempo real entre el docente y los estudiantes.

Dentro de la modalidad sincrónica, se hará uso de:

Clases dinámicas e interactivas: el docente genera permanentemente expectativa por el tema a través de actividades que permiten vincular los saberes previos con el nuevo conocimiento, promoviendo la interacción mediante el diálogo y debate sobre los contenidos.

Talleres de aplicación: el docente genera situaciones de aprendizaje para la transferencia de los aprendizajes a contextos reales o cercanos a los participantes que serán retroalimentados en clase.

Tutorías: Para facilitar la demostración, presentación y corrección de los avances del informe final de investigación formativa.

5.2 Herramientas metodológicas de modalidad asíncrona

Forma de aprendizaje basado en el uso de herramientas que posibilitan el intercambio de mensajes e información entre los estudiantes y el docente en tiempo diferido y sin interacción instantánea. La modalidad asincrónica se hará uso de metodologías colaborativas tales como:

- Portafolio de Evidencias Digital: Permite dar seguimiento a la organización y presentación de evidencias de investigación y recopilación de información para poder observar, contrastar, sugerir, incentivar, preguntar.
- Aprendizaje Basado en Problemas (ABP).
- Retroalimentación.

INVESTIGACIÓN FORMATIVA

En la asignatura de métodos computacionales de la física se promueve la investigación formativa a partir de los temas desarrollados en clase, tienen la posibilidad de realizar monografía orientado a diferentes fenómenos físicos del entorno local o regional. Para el cual hacen uso de busqueda de artículos en diferentes plataformas o repositorios de la web. La exposición grupal al final del ciclo permitirá conocer las habilidades adquiridas en el campo de la investigación científica con presentación bajo el enfoque APA.

RESPONSABILIDAD SOCIAL

La Universidad Nacional del Callao, dentro del ámbito educativo, hace frente a su función social respondiendo a las necesidades de transformación de la sociedad a nivel regional y nacional mediante el ejercicio de la docencia, la investigación y la extensión. En esa línea, la responsabilidad social académica de la asignatura consiste en aportar a la sociedad a la solución de problemas de su entorno según el enfoque del tema, de tal manera que ayude a mejorar las condiciones ambientales, económicas, sociales o de otra índole según el problema planteado.

VII. MEDIOS Y MATERIALES (RECURSOS)

Los medios materiales e informáticos, es según la disponibilidad en las aulas para las clases teóricas y de laboratorio.

MEDIOS INFORMÁTICOS	MATERIALES DIGITALES
a) Computadora	b) Diapositivas de clase
c) Internet	d) Texto digital
e) Correo electrónico	f) Videos
g) Plataforma virtual	h) Tutoriales
i) Software de programación	j) Enlaces web
k) Pizarra digital	I) Artículos científicos

VIII. SISTEMA DE EVALUACIÓN DE ASIGNATURA

Evaluación diagnóstica: este proceso se realiza en cada clase por la naturaleza de la asignatura, donde el docente evalúa de forma permanente el proceso de aprendizaje de la interacción estudiante-computador.

Evaluación formativa: Por su naturaleza el proceso de enseñanza aprendizaje, es permanente y sistemático que se parte desde lo básico de los fundamentos del programa FORTRAN y se implementa comprendiendo los algoritmos para trasladarlo al lenguaje maquina y la obtención de resultados óptimos que garantizan el desarrollo de competencias desde el análisis teórico y la interacción estudiante computador. Los productos están basados en la presentación de portafolios y se evalúa mediante una rubrica.

Evaluación sumativa: La evaluación se realiza por unidades según el avance de programación que comprende notas de participación, laboratorios, exámenes parciales, finales, investigación formativa y actitudinal.

En cumplimiento del modelo educativo de la universidad, el sistema de evaluación curricular del silabo, consta de cinco criterios (Según Resolución Nº 102-2021-CU del 30 de junio del 2021).

- a) Evaluación de conocimientos 40% (parcial y final)
- b) Evaluación de procedimientos 30% (laboratorios)
- c) Evaluación actitudinal 10%.
- d) Evaluación de investigación formativa 1 5 % (monografía y exposición)
- e) Evaluación de proyección y responsabilidad social universitaria 5%

CRITERIOS DE EVALUACIÓN:

La ponderación de la calificación (de acuerdo con lo establecido en el sistema de evaluación de la asignatura) será la siguiente:

- Entrega de trabajos de laboratorio (NL) por semana de clase.
- Un Trabajos de investigación formativa (IF).
- Nota actitudinal (NA)
- Proyección Social (PS)
- Un (01) examen parcial (EP)
- Un (01) examen final (EF)
- Un (01) examen sustitutorio (ES) que reemplaza al EP o EF.

La fórmula para obtener el promedio final (PF) es el siguiente:

$$PF = 0.2EP + 0.2EF + 0.3NL + 0.1NA + 0.15IF + 0.05PS$$

REQUISITOS PARA APROBAR LA ASIGNATURA

De acuerdo con los reglamentos de estudios de la Escuela de Posgrado de la Universidad Nacional del Callao, se tendrá a consideración lo siguiente:

- Participación en todas las tareas de aprendizaje.
- Asistencia mínima del 70%.
- La escala de calificación es de 0 a 20.
- El estudiante aprueba si su nota promocional es mayor o igual a 11.

La evaluación del aprendizaje se adecua a la modalidad presencial, considerando las capacidades y los productos de aprendizaje evaluados descritos para cada unidad. Se evalúa de manera permanente.

IX. FUENTES DE INFORMACIÓN

9.1 FUENTES BASICAS

- HERMANN D. W. Computer Simulation Methods in Theoretical Physics: Edith. Springer, Berlin
- RALSTON, H.S. WILF, Mathematical Methods for Digital Computers, Wiley & Sons, New York, 1960
- PAUL L. DE VRIES, A First Course. In Computational Physics, Miami University, Oxford, Ohio, JOHN WILEY & SONS, INC. 424 Pág. 1994.

9.2 FUENTES COMPLEMENTARIAS

- Journal of computational physics. (1966). Amsterdam: Elsevier.
- IOP Science. (n.d.). Philadelphia, PA: IOP Publishing.
- "Numerical Analysis" Kincaid-Cheney: http://www.netlib.org/kincaid-cheney/
- http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP?Res=150
- 'Numerical Recipes': http://www.nr.com/
- http://www.ugr.es/informatica/software/index.htm

X. NORMAS DEL CURSO

- Normas de netiqueta:
- El uso del computador es exclusivamente para la implementación de programas académicos y está prohibido la instalación de software diferente al uso de la asignatura.
- Uso adecuado y educado de la red.
- Utilizar la armonía entre sus compañeros y con los demás sin vulnerar o herir susceptibilidades.
- Respetar el credo, religión de sus compañeros.
- Normas de convivencia
 - 1. Respeto.
 - 2. Asistencia.
 - 3. Puntualidad.
 - 4. Presentación oportuna de los entregables.